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Further comments on algebras for external electromagnetic 
interaction with relativistic fields 
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Mathematics Department, The University of Aston in Birmingham, Gosta Green, 
Birmingham, B4 7ET, UK 

Received 14 June 1976 

Absiract. An algebra providing causal minimal interaction with an external electromagnetic 
field is considered. It was incorrectly claimed in an earlier paper that this algebra was infinite 
and here it is shown to be finite, but not large enough to support a theory with spin greater 
than one. Also, a method is given for finding the size of some Young symmetrizer algebras, 
which may provide further examples of causal theories. 

1. Introduction 

In a previous paper (Cox 1976) we have proposed a method for finding possible causal 
interacting high-spin theories. The theories are based on the usual linear field equation 

( r ,pp  + ix)@ = 0 (1.1) 
with minimal coupling to an external electromagnetic field by the replacement 

p ,  + m, = p ,  + eA,. 

As a sufficient condition for causality it is required that the true equation of motion, 
in the interaction case, should have a principal part which is Klein-Gordon. The 
resulting conditions on the r, are given in Young symmetrizer form: 

( J,lgM,”p...€ = 0 for some i, j (1.2) 
where Y‘$ is the Young symmetrizer corresponding to the ith standard tableau of the 
Young frame F;, and 

M , ~ ~ . . . ~  = (r,rv -tjwu)rp. . . re. (1.3) 
In particular, it was shown that the fourth rank algebra 

( y‘” M),”w = 0 i = 1 , 2 , 3  

yields a causal theory, and that this algebra was infinite-that is, the requirement of 
causality was not sufficient to generate a finite algebra. Unfortunately, the proof that the 
algebra was infinite is incorrect, and in fact, as we prove later in this paper the algebra 
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(1.4) is finite. However, as we also show, the algebra (1.4) is not big enough to support a 
high-spin theory-that is, a theory with spin greater than one. The same of course 
applies to any sub-algebra, such as that suggested in the previous paper, obtained by 
imposing further relations of the type 

(PM wpvpp = 0 

An example of the latter type of sub-algebra is treated separately below, in equation 
(2.14), in order to illustrate an approach to Young symmetrizer algebras such as (1.2), 
which seems to be reasonably fruitful for a particular class of algebras. The algebra (1.4) 
does not belong to this class, and it was a failure to notice this which led to the erroneous 
conclusion that it was an infinite algebra. We analyse the more general algebra (1.4) 
separately in 0 3. 

The type of interaction theory we are considering here-one in which the principal 
part of the true equation of motion is Klein-Gordon-is a particular case of the ‘nice 
interactions’ of Bellisard (1976), who has rigorously proved their causal nature. 
Bellisard has posed the question of whether field equations exist describing spin greater 
than or equal to ; admitting nice interactions. Our results seem to show that the nice 
minimal electromagnetic interaction with a field theory based on (1. l), governed by a 
fourth rank tensor algebra for the rr,  cannot be high spin. We hope to generalize these 
results to higher rank algebra in the future, to at least partially answer Bellisard’s 
question. 

The general approach in this paper is to find the size of the algebra, i.e. the maximum 
possible number of independent elements, and to show that this is insufficient to support 
a good causal high-spin theory. We draw attention to the fact that high-spin algebras 
have to be very large, even for the spin-; case, which requires at least 400 elements (the 
Rarita-Schwinger spin-; theory requires only 256 elements, but is acausal). 

2. The analysis of some simple Young symmetrizer algebras 

The analysis of algebras described by relations of type (1.4) seems to be very difficult, 
even in the initial stages of finding the number of independent elements in the algebra. 
The only such algebras known in detail are the Dirac and Duffin-Kemmer (DK) 
algebras, which satisfy 

(Y ,W, ,=O (Dirac) (2.1) 

respectively (also see (2.6), below). The numbers 1 , 2 , 3  in the frame correspond to the 
indices p, Y, p respectively. These algebras have 16 and 125 independent elements 
respectively. The methods used to analyse these algebras are rather ad hoc and do not 
conveniently generalize to the algebra (1.4) for example. 
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As a preliminary to studying the field theories based on such algebras as (1.2) it is 
necessary to know whether the algebra is finite. If so, then the size of the algebra will 
give information on the maximum spin which the corresponding theory can accommo- 
date. Unfortunately it seems difficult to calculate the independent products in a general 
Young symmetrizer algebra. However, when the algebra is equivalent to a group of 
simple symmetry conditions on M,,,p...cr then we can calculate the number of indepen- 
dent products for each rank, using a method given in the previous paper (Cox 1976). 
While the DK algebra (2.2) is easily dealt with more directly, we will use it here as a 
simple illustration of the procedure. 

For the DK algebra we can write 

using the resolution of the identity in terms of Young symmetrizers, 
1 

using (2.2). The group of all permutations under which the last expression is either 
invariant or changes sign only is given by 

G = {e, (1 3)(-)} (2.4) 

where e is the identity permutation and the superscript (-) means that the expression 
changes sign under the permutation (13) of the indices. The algebra (2.2) therefore 
implies that the third rank tensor MFUp has symmetry {e, (13)(-)} or {e, (pp) ( - ) } .  
Conversely, it is easy to verify directly in this case that if MpUp has symmetry group 
{e ,  (13)(-)}, then it satisfies the algebra (2.2). Thus, the requirement that M,, has 
symmetry group (2.4) is completely equivalent to the algebra (2.2). This rewriting of the 
algebraic relations (2.2) leads to a simplification in the treatment of the algebra. 

Consider the third rank product r,rJ,, in the DK algebra. Since MpUp = 
(r,ru - S,,)T, is subject to the symmetry (2.4), r,T,T, will also be subject to the same 
symmetry, except that terms like Spurp will arise. For example 

M,, = -M P ”P 

r,rurp = -r,r,r, +sFurp +spur,. 
is equivalent to 

However, in finding the independent elements of the algebra, the object is to express 
higher rank products in terms of lower rank products and so, when dealing with third 
rank products, the terms linear in r, can be ignored. Thus, we can say that the symmetry 
(2.4) on MFvp implies the same symmetry (‘modulo lower rank products’) on the third 
rank products r,rurp. 

Now consider the higher rank products in the DK algebra. Let r,l,2...,, denote the 
rth rank product. By virtue of the DK algebra every set of three adjacent indices of 
~ , l , z . , . , ,  possesses the symmetry (2.4)-this can be expressed simply as ‘the rth rank 
product is antisymmetric in alternate indices’. We can therefore write down a set P,, of 
r - 1 ermutations: e, under which r,l,Z,..,, is invariant, and (p1p3)(-),  

ate a subgroup Gr of S,, the symmetric group on r objects, and when the signs are taken 
(p2p4) P-, , . . . ( p r - ~ p r )  (-) , under which r,,,,,,,,, changes sign. The elements of P, gener- 
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into account G, gives the symmetry of the rth rank product implied by the third rank 
symmetry (2.4), which in turn is equivalent to the DK algebra. No other symmetries are 
possible for Trl r’2...r, in the DK algebra, because these would have to be consequences of 
relations other than (2.2) and therefore outside of the DK algebra. Thus, G, gives the 
complete symmetry of the rth rank product in the DK algebra. Given the complete 
symmetry of a tensor, we can calculate the number of independent components, which 
in this case would be the number of independent rth rank products in the DK algebra. 
Thus, if rr1r2...r, has symmetry G, = (pi} then the number of independent components 
of Tp1p2...r, in four dimensions is given by (Cox 1976) 

1 
n, = - 1 ~,,4‘1 

IGI Pt 

where (GI = order of G, Spi = +1(-1) if Tr1rL2.,.cL, is invariant (changes sign) under pi, and 
ci is the number of disjoint cycles in pi-for example e = (1)(2) . . . ( r ) ,  so c, = r. If for 
some r we obtain n, = 0, then there are no independent rth rank products in the 
algebra-they can all be expressed in terms of lower rank products-and the algebra is 
finite. In the case of the DK algebra this happens for r = 9. All products for rank greater 
than 8 can be expressed in terms of lower rank products. This is a simple consequence of 
the antisymmetry of DK products in alternate indices, and in fact the method given 
above would be unnecessarily complicated for the DK algebra. However, it seems to be 
the only simple approach for some algebras. 

For a concrete example, consider the fourth rank products in the DK algebra, 
rrlP211311.4. We have 

P4 = {e, (13)(-), (24)(-)} 

which generates the symmetry group 

G4 = {e,  (13)(-), (24)(-), (13)(24)}. 

Then (2.5) gives 

n4 = +(44-2 x 43+42) = 36. 

So there are 36 independent fourth rank products in the DK algebra, 
For the fifth rank products we have 

P5 = { e ,  (13)(-), (24)(-), (35)(-)}. 

The subgroup of S5 generated is conveniently obtained by noting that P5 generates the 
direct product of the subgroup generated by {e, (24)(-)} and {e, (13)(-), (35)(-)}. Thus 

G5 ={e, (24)‘-’)OIe, (13)(-), (35)(-), (15)(-), (135), (153)) 

and (2.5) gives 

n5 = +7(4’-4 x 44 + 5 x 43 - 2 x 4’) = 24. 

So there are 24 independent fifth rank products in the DK algebra. 
The full list of independent elements in the DK algebra has been given by Kemmer 

(1939), from which the above results may be verified. The number of higher rank 
products can be determined similarly, but the working becomes very complicated by the 
above method. 



Further comments on causal algebras 1971 

When the DK algebra is expressed in the Young symmetrizer form (2.2) an obvious 
and interesting question arises as to the significance of other possibilities such as 

which also are causal and unique mass (Cox 1976). The equivalent symmetry group in 
this case is 

G3 = { e ,  (12)(-)}. 

There are 4 independent first rank products, 16 second rank and 24 third rank products 
(20 from YF M,, and 4 from Y Mpvp (Hammermesh 1962, p 388)) in this algebra. 

For the fourth rank products G3 generates the symmetry group G4= 
{e, (12)(-), (23)(-), (13)(-), (123), (132)}, giving n4= 16. There are 4 fifth rank products, 
since G3 implies that the general fifth rank product rPVpps is antisymmetric in any four 
adjacent indices and so must be reducible to the form *r1r2r3r4rr where E is 
arbitrary. Similarly, the sixth rank product must be antisymmetric in the first five 
indices and must therefore be fully reducible to lower rank products. So, in all, the 
algebra (2.6) has 65 independent elements, if we include the unit element. This is not 
large enough to yield a spin- 1 manifestly covariant Lagrangian field theory based on the 
first order equation (1.1). The usual DK theory (2.2) is in fact the simplest such theory 
and this already contains 100 independent elements in its algebra-the r, are l o x  10 
matrices. In fact, the algebra (2.6) is the Hermitian conjugate algebra to that obeyed by 
the matrices P, used by Capri (1969) for a new class of spin-: equations, and later 
studied in detail by Santhanam and Tekumalla (1974). For, explicitly, the algebra (2.6) 
is 

a 

where MpVp = @,Pv - S,,)P,. Putting S,, = MpUp +MvPp = S,,, (2.8) implies S,, = 
Spy,, while (2.7) can be rewritten S,, + S,,, + Sa,,, = 0. These equations yield S,, = 0. 
Conversely S,, = 0 implies (2.6). Thus (2.6) is equivalent to the algebra 

which is precisely that studied by Santhanam and Tekumalla. 
The method given above can be applied to any sth rank Young symmetrizer algebra 

which is equivalent to a group of simple symmetry conditions. First, the arbitrary sth 
rank product is resolved into irreducible symmetry classes using the Young symmetriz- 
ers. The general form of the sth rank product in the algebra is then obtained by omitting 
those symmetrizers appearing in the algebra (1.2). The symmetry of the product can 
then be found, and must be shown to be completely equivalent to the algebra (1.2). 
When this is so, the symmetries of the higher rank products in the algebra can be 
obtained and (2.5) can be used to calculate the corresponding number of independent 
elements. When the algebra (1.2) is not equivalent to a symmetry group, then the 
analysis is more complicated, and a general approach seems more difficult to find. The 
algebra (1.4) is not equivalent to a symmetry group and is treated separately in the next 
section. 
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Historically, the Young operators were first introduced by Young precisely for the 
analysis of tensor equations via the study of substitutional equations of the type 

LiX = 0 (2.10) 

where L, are known permutation operators (i.e. elements of the group algebra of a 
symmetric group) and X is unknown. The relation of equations such as (2.10) to tensor 
equations is clear-a linear equation such as 

LFpv...E = 0 (2.11) 

where L is a permutation operator on the n indices p u .  . . E, is equivalent to the 
substitutional equation 

LX=O (2.12) 

where X is a permutation operator satisfying 

F p v  ... = m p v  ... E .  (2.13) 

Thus, the solution of (2.11) is given by (2.13) where X satisfies (2.12). A complete 
account of the work of Young, and subsequent developments on the theory of equations 
such as (2.10), is given in Rutherford (1948). However, the general method for solving 
such equations, by the 'master indempotent', is very unwieldy except in the simplest 
cases. Nevertheless, for more complicated algebras of the type (1.2) this is presumably 
the only approach available at present The problem may be simplified by applying such 
physical requirements as Lagrangian origin, and we hope to discuss such points in the 
future. 

For a less trivial example of an algebra which is equivalent to a simple symmetry 
group, consider the sub-algebra of the causal algebra (1.4), defined by 

( Y -  W p v p a  = O  

In this case we have 

1 
= - (2Ym + Y  )Mpvp 

4! 8 
U 

by (2.14). It can be verified that the last expression has the symmetry 

(2.14) 

(2.15) 

G4 = {e, (12)(34), (13)(24), (14)(23), (1)(2)(34)(-), (12)(3)(4)(-), (1324)'-', (1423)'-'} 

(2.16) 
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(again, 1 , 2 , 3 , 4  refer to the indices p ,  v, p, a). Conversely, suppose MPuw has the 
symmetry G4, but does not satisfy any lower rank algebra. Thus 

(2.17) 

for gEG4, where 8, is *1 as appropriate. (2.5) yields n 4 = 2 1  for the number of 
independent components of MPuw satisfying (2.17). This agrees with the number of 
independent components of MPuw satisfying the algebra (2.14), given by the solution 
(2.15) (20 for YH MwVpa, 1 for Y Mpuw). Also, every solution of (2.14) is a solution of 

(2.17). Thus, (2.14) and (2.17) are equivalent. 
For the fifth rank products, applying G4 to the two sets of four adjacent indices we 

find that the whole of S5 is generated. In this case this is easy enough to verify directly, 
using a computer to do the calculations, if necessary, but in more complicated cases one 
could make use of knowledge of the subgroup structure of the permutation groups. 
Further, the fifth rank product changes sign under odd permutations (modulo third and 
first rank products), and so is antisymmetric in all pairs of indices. Thus, there are no 
independent fifth rank products (in four dimensions)-they all reduce, by the algebra 
(2.14). 

The algebra (2.14) is therefore finite, and has 105 independent elements (4 for T,, 
16 for TJ., 64 for r,TJ,, 20 for YH rJJJa  and 1 for Y rJJJa) .  Again, this 

i 

algebra is not large enough to support a high-spin theory. i 

3. The algebra (1.4) 

In this algebra the fourth rank product rFUpa can be expressed in the form 

1 2  

4! i - 1  
rruw = - (2 y'i; + Y )rpuw + r products of 2nd rank (3.1) 1 

(Cox 1976). The right-hand side has the symmetry 

G4 = {e,  (12)(34), (13)(24), (14)(23)) (3.2) 

and in the previous paper it was mistakenly assumed that this symmetry group was 
equivalent to the algebra (1.4). This is not so however, since Ymn is also invariant 
under G4 and so: 

2 

i = l  
(3.3) 

would be invariant under G4, and the first equation of (1.4) need not be satisfied-i.e. 
the symmetry group G4 acting on MpuP does not imply 

It does however imply the remaining relations 
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and so implies a more general algebra than (1.4). If we apply (2.5) to the group G4 we 
find n4 = 76, so that the algebra implied by G4 has 76 independent fourth rank products. 
This agrees with the standard calculation for the number of independent components 
for the Young symmetrizers (Y-M),,,, ( Y E  M)pvpa, ( Y  M ) p v p  in four dimensions, 

So the method given in the last section does not apply to the algebra (1.4). We now 
give an alternative argument, which in fact shows that the algebra is finite, but still not 
large enough for a good high-spin theory. 

which yields 35 + 2 x 20 + 1 = 76. 1 

The algebra (1.4) is equivalent to the system 

since these are a consequence of (1.4) and conversely (3.6) implies (3.5) which together 
with (3.4) gives (1.4). Again, we can rewrite (3.6), (3.4) as 

(pr),, = rpupa + 2nd rank products 

( Y -  I‘),vp = 2ndrankproducts. 

In particular, putting all indices equal in (3.8) gives the minimal polynomial for each Tr : 

r”, = r;. (3.9) 

It is this part of the algebra which allows the reduction in the rank of the products-the 
remaining part merely allows rearrangement of the order of factors in the products. 
(3.9) implies that in any given product no more than three adjacent indices can be the 
same. 

The equations (3.7) imply that for any given choice of indices pvpa we can always 
move any one of them, say p, to the extreme left, and then a complete set of 
independent fourth rank products can be obtained from rClvpa, rFVap, 
rppv,, rppav, rcLapY, rPavp, although not all of these need be independent (they will not be 
if, for example, two indices are the same). For example, the independent fourth rank 
products with all indices different can be taken as r1234, I‘1243, I-1342, I-1423, r1432 .  

It can be verified that a fourth rank tensor, in four dimensions, with this property that 
any one index can be moved to the left, has 76 independent components, as it should 
have, by the equivalence of this symmetry to the algebra (3.5). The equation (3.4) 
implies another 35 independent relations, which further reduces the number of fourth 
rank products to 41. As well as the ‘reduction equations’ (3.9), (3.4) also contains 
further commutation rules allowing the indices to be further permuted (modulo lower 
rank products) in addition to G,. However, it is not necessary to take account of these 
extra relations to show that the algebra (1.4) is not high-spin. It is sufficient, and much 
easier, to work with (3.6) and (3.9) only. Although this will overestimate the number of 
independent products in the algebra, the result will still be too small for a high-spin 
theory. 

We first point out that the number of independent elements in a high-spin algebra 
for theories based on (1. l ) ,  with real Lagrangian origin, and manifestly covariant under 
the complete Lorentz group, is surprisingly large. As always, the manifest covariance 
of a first order equation such as (1.1) requires a number of auxiliary fields, and these, 
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while playing no physical part in the theory, inflate the dimension of the TP matrices and 
therefore the size of their algebra. For exam le, the simplest spin-; theory is one based 
on the representation 9($, 0)09(0,  $)09((z, 1 ) 0 9 ( l ,  $). Up to equivalence in the rP 
there is only one good theory based on this representation, and the equation (1.1) 
(Gel'fand et a1 1963, also see Hurley and Sudarshan 1975). This is the original spin-; 
equation of Fierz-Pauli (Fierz and Pauli 1939, Gupta 1954), or its equivalent form, the 
Rarita-Schwinger (RS) equation (Rarita and Schwinger 1941). The matrices in this case 
are 16 x 16 and irreducible, so the algebra generated has dimension 256. However, this 
theory is well known to be acausal (Velo and Zwanzinger 1969). So any causal high-spin 
theory must be a little more complicated, and the simplest way this can be achieved is to 
double up the a($, 0), 9(0, $) representations. This will require 20 X 20 I'P matrices, 
and the r algebra must have 400 independent elements. However, even this theory is 
not entirely satisfactory. In a recent study of this representation, 29($, 0 ) 0 2 9 ( 0 ,  $0 
9(& 1)09(1,:), Hurley and Sudarshan (1975) have shown that a good theory 
(covariance under ZP and reflection, Lagrangian origin, unique mass and spin-;, but 
not necessarily causal), can only be achieved for either the RS theory (non-causal) or a 
theory in which the rank of the r algebra is five-i.e. the minimal equation is of fifth 
degree. Since our r algebra has rank four, the extended representation will still not take 
us out of the RS theory. However, Hurley and Sudarshan observe that theories with 
differing dynamics to the RS theory may be possible if the r algebra is reducible but 
indecomposable, using the extended representation. We do not know what this requires 
of our algebra (1.4), but we will be optimistic and suppose that a causal spin-; theory 
may be possible with a r algebra of 400 elements. We will see that even this is too large 
for (1.4). 

For good causal integer spin theories we will need even larger algebras-a brief 
survey of spin-2 theories based on (1.1) is given by Cox (1974) (see also Shamaly and 
Capri 1971, Frank 1973). So, any good causal high-spin theory based on (1.1) is obliged 
to have a r algebra with at least 400 independent elements. 

P 

First, consider an arbitrary rth rank product in the algebra (1.4), r >4: 

rCIlP2.+, = rP,rP, . . . rP,. 
According to the symmetry (3.6) we can permute any index, in any adjacent four, to the 
extreme left position. By working through sets of four adjacent indices we can therefore 
pull any r - 3  indices to the front in the product (modulo lower rank products), and 
furthermore these first r - 3 indices can be permuted arbitrarily amongst themselves. 
Thus, the independent r th rank product can always be written in the form 

rPlrP2 ' ' . rPr-3rPr-2rPr-1rPr 
where rP1rlL2 . . . rP,-3 are completely symmetric and rP,-2rP,-lrP, are arbitrary for any 
choice of the indices, where the first r - 3  can be chosen at will. It follows that no 
particular value of an index may occur more than three times, because then it would be 
possible to bring these equal indices adjacent and use (3.9) to reduce the rank of the 
product. The most we can do is have a product with all four different indices occurring 
three times, and such a product could always be written in the form I':r;r$i. Thus the 
maximum rank of independent product, subject to (3.6) and (3.9), is twelve, and there is 
only one of these. We can now work down, counting the independent lower rank 
products, subject to (3.6) and (3.9). In the following, when the indices pvpa occur they 
are to be regarded as distinct. Also, we denote rk by pk,  etc. 
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11 th rank, 4 products 
P v P a  

10th rank, 10 products 

9th rank, 20 products 

8th rank, 33 products 
v p a (12), pvp3a3(6), pv  p a (12), 12223242,12223434,12223423(3) 

7th rank, 48 products 

6th rank, 64 products 
p3a3(6) ,  vp2a3(24), pvpa3(4), v p a ,v2papa,v2pa2p(12), pvp2a2,~vpapa,  

5th rank, 84 products 

2 3 3  

3 3 3  2 2 3 3  
pv p a (417 P v p a (6)  

v p a (41% Pv p a (1% P v p a (4) 
3 3 3  2 3 3  2 2 2 3  

2 3 3  2 2 3  

2 2  3 2 2 2  
vp3a3(12), a (121, pvp2a3(12), pv a ,pv2papa,Pv2pa2p(12) 

PVW 2P(18) 

2 2 2  

2a 12), 3(  12), vp 2a vpapa, vpa 2p (36), vpa (24). 

Fourth and lower rank products for (1.4) are easily found d i r ec t ly41  fourth rank, 
64 third rank, 16 second rank and 4 first rank. As we have said, the above results 
overestimate the size of the algebra (1.4), using as they do only the relation (3.6) and 
(3.9), but even so they only yield a total maximum of 389 for the algebra (1.4), which is 
too small for a high-spin theory. The algebra (1.4) cannot therefore support a causal 
high-spin theory. This is even more true of any sub-algebra of (1.4)-in particular, the 
algebra considered in P 2. 

4. Conclusion 

A sufficient condition for causality in the external field problem for minimal elec- 
tromagnetic coupling with a field described by (1.1) is that the principle part of the 
reduced equation of motion be Klein-Gordon. The only well known theories which 
satisfy this requirement are the Dirac spin-; and DK spin, 0 , l  theories, and it is natural to 
look for high-spin theories. In an earlier paper we have given a simple algebraic 
technique for obtaining theories satisfying this sufficient condition, in the form of 
Young symmetrizer algebra, and there gave the example of a fourth rank causal 
algebra, incorrectly stating it to be infinite. In this paper we give a more thorough 
analysis of this algebra, and find that it is in fact finite, but not large enough to 
accommodate a high-spin theory. 

We also describe a method of counting the independent elements of a special class of 
Young symmetrizer algebras. The method applies to algebras which are equivalent to a 
simple symmetry group operating on a given rank of product. It involves finding the 
consequent subgroup of S, under which the rth rank product in the algebra is either 
invariant or changes sign (modulo lower rank products). This method is not essential in 
this paper-it does not apply to the algebra (1.4)-but it may be helpful in the study of 
higher rank algebras, which we hope to describe in a later publication. 

It may be that there are no ‘nicely interacting’ causal high-spin theories-for 
example, if it turns out that the algebras generated by the Klein-Gordon principal part 
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requirement are too small to accommodate spin greater than one. The only alternative 
then would be that the interaction part of the reduced equation of motion, in which the 
constraints have been eliminated, contributes second derivative terms in such a way that 
the propagation remains causal, and perhaps even this may be impossible for high-spin. 

Note that in the approach adopted here, it was not necessary to have detailed 
knowledge of the algebras concerned to eliminate the possibility of high-spin-we 
merely needed an upper bound on the size of the algebra which was less than that 
required for the simplest high-spin theory. This idea may extend to higher rank 
algebras. On the other hand, if we obtain an algebra which is apparently large enough 
for high-spin, we would then have to analyse the algebra thoroughly to see if it did 
indeed have non-trivial representations giving good high-spin theories, and this would 
be a very difficult task. In this paper, we have not pursued the causal algebra or its 
sub-algebra further because they can only yield spin-1 at the most and our interest is in 
whether high-spin theories exist. 
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